We have the following indirect implication of form equivalence classes:

332 \(\Rightarrow\) 276
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
332 \(\Rightarrow\) 343 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
343 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 276

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
332:  

A product of non-empty compact sober topological spaces is non-empty.

343:

A product of non-empty, compact \(T_2\) topological spaces is non-empty.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

276:

\(E(V'',III)\): For every set \(A\), \({\cal P}(A)\) is Dedekind finite if and only if \(A = \emptyset\)  or \(2|{\cal P}(A)| > |{\cal P}(A)|\). \ac{Howard/Spi\u siak} \cite{1994}.

Comment:

Back