We have the following indirect implication of form equivalence classes:

335-n \(\Rightarrow\) 185
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
335-n \(\Rightarrow\) 333 Bases for vector spaces over the two element field and the axiom of choice, Keremedis, K. 1996a, Proc. Amer. Math. Soc.
333 \(\Rightarrow\) 67 clear
67 \(\Rightarrow\) 89 On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
89 \(\Rightarrow\) 90 The Axiom of Choice, Jech, 1973b, page 133
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 77 Well ordered subsets of linearly ordered sets, Howard, P. 1994, Notre Dame J. Formal Logic
77 \(\Rightarrow\) 185 Well ordered subsets of linearly ordered sets, Howard, P. 1994, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
335-n:

Every quotient group of an Abelian group each of whose elements has order  \(\le n\) has a set of representatives.

333:

\(MC(\infty,\infty,\mathrm{odd})\): For every set \(X\) of  sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that  for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is odd.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

89:

Antichain Principle:  Every partially ordered set has a maximal antichain. Jech [1973b], p 133.

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

77:

A linear ordering of a set \(P\) is a well ordering if and only if \(P\) has no infinite descending sequences. Jech [1973b], p 23.

185:

Every linearly ordered Dedekind finite set is finite.

Comment:

Back