We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
335-n \(\Rightarrow\) 333 |
Bases for vector spaces over the two element field and the axiom of choice, Keremedis, K. 1996a, Proc. Amer. Math. Soc. |
333 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 89 |
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
89 \(\Rightarrow\) 90 | The Axiom of Choice, Jech, 1973b, page 133 |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 139 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
335-n: | Every quotient group of an Abelian group each of whose elements has order \(\le n\) has a set of representatives. |
333: | \(MC(\infty,\infty,\mathrm{odd})\): For every set \(X\) of sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is odd. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
89: | Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
139: | Using the discrete topology on 2, \(2^{\cal P(\omega)}\) is compact. |
Comment: