We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
335-n \(\Rightarrow\) 333 |
Bases for vector spaces over the two element field and the axiom of choice, Keremedis, K. 1996a, Proc. Amer. Math. Soc. |
333 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 80 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
335-n: | Every quotient group of an Abelian group each of whose elements has order \(\le n\) has a set of representatives. |
333: | \(MC(\infty,\infty,\mathrm{odd})\): For every set \(X\) of sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is odd. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
Comment: