We have the following indirect implication of form equivalence classes:

302 \(\Rightarrow\) 74
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
302 \(\Rightarrow\) 392 clear
392 \(\Rightarrow\) 394 clear
394 \(\Rightarrow\) 337 clear
337 \(\Rightarrow\) 92 clear
92 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 74 note-10

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
302:

Any continuous surjection between compact Hausdorff spaces has an irreducible restriction to a closed subset of its domain.

392:

\(C(LO,LO)\): Every linearly ordered set of linearly orderable sets has a choice function.

394:

\(C(WO,LO)\): Every well ordered set of non-empty linearly orderable sets has a choice function.

337:

\(C(WO\), uniformly linearly ordered):  If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\).

92:

\(C(WO,{\Bbb R})\):  Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function.

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

74:

For every \(A\subseteq\Bbb R\) the following are equivalent:

  1. \(A\) is closed and bounded.
  2. Every sequence \(\{x_{n}\}\subseteq A\) has a convergent subsequence with limit in A.
Jech [1973b], p 21.

Comment:

Back