We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
421 \(\Rightarrow\) 338 | clear |
338 \(\Rightarrow\) 32 | clear |
32 \(\Rightarrow\) 357 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
421: | \(UT(\aleph_0,WO,WO)\): The union of a denumerable set of well orderable sets can be well ordered. |
338: | \(UT(\aleph_0,\aleph_0,WO)\): The union of a denumerable number of denumerable sets is well orderable. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
357: | \(KW(\aleph_0,\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of denumerable sets: For every denumerable set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: