We have the following indirect implication of form equivalence classes:

214 \(\Rightarrow\) 304
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
214 \(\Rightarrow\) 9 clear
9 \(\Rightarrow\) 304 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
214:

\(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\).

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

304:

There does not exist a \(T_2\) topological space \(X\) such that every infinite subset of \(X\) contains an infinite compact subset.

Comment:

Back