We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
355 \(\Rightarrow\) 358 | clear |
358 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 389 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
355: | \(KW(\aleph_0,\infty)\), The Kinna-Wagner Selection Principle for a denumerable family of sets: For every denumerable set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
358: | \(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
389: | \(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function. \ac{Keremedis} \cite{1999b}. |
Comment: