We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
381 \(\Rightarrow\) 418 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
418 \(\Rightarrow\) 419 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
419 \(\Rightarrow\) 420 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
420 \(\Rightarrow\) 34 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
34 \(\Rightarrow\) 19 |
Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
381: | DUM: The disjoint union of metrizable spaces is metrizable. |
418: | DUM(\(\aleph_0\)): The countable disjoint union of metrizable spaces is metrizable. |
419: | UT(\(\aleph_0\),cuf,cuf): The union of a denumerable set of cuf sets is cuf. (A set is cuf if it is a countable union of finite sets.) |
420: | \(UT(\aleph_0\),\(\aleph_0\),cuf): The union of a denumerable set of denumerable sets is cuf. |
34: | \(\aleph_{1}\) is regular. |
19: | A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1). |
Comment: