We have the following indirect implication of form equivalence classes:

385 \(\Rightarrow\) 389
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
385 \(\Rightarrow\) 386 Products, the Baire category theorem, and the axiom of dependent choice, Herrlich-Keremedis-1999a[1999a], Topology and its Applications.
386 \(\Rightarrow\) 10 Products, the Baire category theorem, and the axiom of dependent choice, Herrlich-Keremedis-1999a[1999a], Topology and its Applications.
10 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 389 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
385:

Countable Ultrafilter Theorem:  Every proper filter with a countable base over a set \(S\) (in \({\cal P}(S)\)) can be extended to an ultrafilter.

386:

Every B compact (pseudo)metric space is Baire.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

389:

\(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function.  \ac{Keremedis} \cite{1999b}.

Comment:

Back