We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
391 \(\Rightarrow\) 399 | clear |
399 \(\Rightarrow\) 323 | clear |
323 \(\Rightarrow\) 62 | note-70 |
62 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 276 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
391: | \(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function. |
399: | \(KW(\infty,LO)\), The Kinna-Wagner Selection Principle for a set of linearly orderable sets: For every set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
323: | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
276: | \(E(V'',III)\): For every set \(A\), \({\cal P}(A)\) is Dedekind finite if and only if \(A = \emptyset\) or \(2|{\cal P}(A)| > |{\cal P}(A)|\). \ac{Howard/Spi\u siak} \cite{1994}. |
Comment: