We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 140
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 399 clear
399 \(\Rightarrow\) 323 clear
323 \(\Rightarrow\) 62 note-70
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 140 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

399:

\(KW(\infty,LO)\), The Kinna-Wagner Selection Principle for a set of linearly orderable sets: For every set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

140:

Let \(\Omega\) be the set of all (undirected) infinite cycles of reals (Graphs whose vertices are real numbers, connected, no loops and each vertex adjacent to  exactly two others). Then there is a function \(f\) on \(\Omega \) such that for all \(s\in\Omega\), \(f(s)\) is a direction along \(s\).

Comment:

Back