We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
391 \(\Rightarrow\) 399 | clear |
399 \(\Rightarrow\) 323 | clear |
323 \(\Rightarrow\) 62 | note-70 |
62 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 140 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
391: | \(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function. |
399: | \(KW(\infty,LO)\), The Kinna-Wagner Selection Principle for a set of linearly orderable sets: For every set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
323: | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
140: | Let \(\Omega\) be the set of all (undirected) infinite cycles of reals (Graphs whose vertices are real numbers, connected, no loops and each vertex adjacent to exactly two others). Then there is a function \(f\) on \(\Omega \) such that for all \(s\in\Omega\), \(f(s)\) is a direction along \(s\). |
Comment: