We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 391 \(\Rightarrow\) 399 | clear |
| 399 \(\Rightarrow\) 323 | clear |
| 323 \(\Rightarrow\) 62 | note-70 |
| 62 \(\Rightarrow\) 285 |
On functions without fixed points, Wi'sniewski, K. 1973, Comment. Math. Prace Mat. |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 391: | \(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function. |
| 399: | \(KW(\infty,LO)\), The Kinna-Wagner Selection Principle for a set of linearly orderable sets: For every set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
| 323: | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
| 62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
| 285: | Let \(E\) be a set and \(f: E\to E\), then \(f\) has a fixed point if and only if \(E\) is not the union of three mutually disjoint sets \(E_1\), \(E_2\) and \(E_3\) such that \(E_i \cap f(E_i) = \emptyset\) for \(i=1, 2, 3\). |
Comment: