We have the following indirect implication of form equivalence classes:

392 \(\Rightarrow\) 216
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
392 \(\Rightarrow\) 393 clear
393 \(\Rightarrow\) 121 clear
121 \(\Rightarrow\) 122 clear
122 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 216

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
392:

\(C(LO,LO)\): Every linearly ordered set of linearly orderable sets has a choice function.

393:

\(C(LO,WO)\): Every linearly ordered set of non-empty well orderable sets has a choice function.

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

216:

Every infinite tree has either an infinite chain or an infinite antichain.

Comment:

Back