We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
395 \(\Rightarrow\) 396 | clear |
396 \(\Rightarrow\) 330 | clear |
330 \(\Rightarrow\) 350 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
395: | \(MC(LO,LO)\): For each linearly ordered family of non-empty linearly orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\). |
396: | \(MC(LO,WO)\): For each linearly ordered family of non-empty well orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\). |
330: | \(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See Form 67.) |
350: | \(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). |
Comment: