We have the following indirect implication of form equivalence classes:

400 \(\Rightarrow\) 374-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
400 \(\Rightarrow\) 401 clear
401 \(\Rightarrow\) 327 clear
327 \(\Rightarrow\) 250 clear
250 \(\Rightarrow\) 47-n clear
47-n \(\Rightarrow\) 423 clear
423 \(\Rightarrow\) 374-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
400:

\(KW(LO,LO)\), The Kinna-Wagner Selection Principle for a linearly ordered set of linearly orderable sets: For every linearly ordered set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

401:

\(KW(LO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a linearly ordered set of finite sets: For every linearly ordered set of finite sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

327:

\(KW(WO,<\aleph_0)\),  The Kinna-Wagner Selection Principle for a well ordered family of finite sets: For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\)  then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.)

250:

\((\forall n\in\omega-\{0,1\})(C(WO,n))\): For every natural number \(n\ge 2\), every well ordered family of \(n\) element sets has a choice function.

47-n:

If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function.

423:

\(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in  \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function.

374-n:

\(UT(\aleph_0,n,\aleph_0)\) for \(n\in\omega -\{0,1\}\): The union of a denumerable set of \(n\)-element sets is denumerable.

Comment:

Back