We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
400 \(\Rightarrow\) 402 | clear |
402 \(\Rightarrow\) 324 | clear |
324 \(\Rightarrow\) 357 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
400: | \(KW(LO,LO)\), The Kinna-Wagner Selection Principle for a linearly ordered set of linearly orderable sets: For every linearly ordered set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
402: | \(KW(WO,LO)\), The Kinna-Wagner Selection Principle for a well ordered set of linearly orderable sets: For every well ordered set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
324: | \(KW(WO,WO)\), The Kinna-Wagner Selection Principle for a well ordered family of well orderable sets: For every well ordered set \(M\) of well orderable sets, there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
357: | \(KW(\aleph_0,\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of denumerable sets: For every denumerable set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: