We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
411 \(\Rightarrow\) 412 | clear |
412 \(\Rightarrow\) 10 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
10 \(\Rightarrow\) 288-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
411: | RCuc (Reflexive Compactness for uniformly convex Banach spaces): The closed unit ball of a uniformly convex Banach space is compact for the weak topology. |
412: | RCh (Reflexive Compactness for Hilbert spaces): The closed unit ball of a Hilbert space is compact for the weak topology. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
288-n: | If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function. |
Comment: