We have the following indirect implication of form equivalence classes:

87-alpha \(\Rightarrow\) 174-alpha
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
87-alpha \(\Rightarrow\) 174-alpha "Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
87-alpha:

\(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\).

174-alpha:

\(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations:  Assume \((A,F)\) is  a  multi-algebra  with \(\aleph_{\alpha }\) unary operations (and no other operations). Then  there  is  an  algebra \((B,G)\)  with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras.

Comment:

Back