We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
255 \(\Rightarrow\) 260 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
255: | \(Z(D,R)\): Every directed relation \((P,R)\) in which every ramified subset \(A\) has an upper bound, has a maximal element. |
260: | \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
Comment: