We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
337 \(\Rightarrow\) 211 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
337: | \(C(WO\), uniformly linearly ordered): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). |
211: | \(DCR\): Dependent choice for relations on \(\Bbb R\): If \(R\subseteq\Bbb R\times\Bbb R\) satisfies \((\forall x\in \Bbb R)(\exists y\in\Bbb R)(x\mathrel R y)\) then there is a sequence \(\langle x(n): n\in\omega\rangle\) of real numbers such that \((\forall n\in\omega)(x(n)\mathrel R x(n+1))\). |
Comment: