We have the following indirect implication of form equivalence classes:

67 \(\Rightarrow\) 52
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
67 \(\Rightarrow\) 52 Independence of the prime ideal theorem from the Hahn Banach theorem, Pincus, D. 1972b, Bull. Amer. Math. Soc.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

52:

Hahn-Banach Theorem:  If \(V\) is a real vector space and \(p: V \rightarrow {\Bbb R}\) satisfies \(p(x+y) \le p(x) + p(y)\) and \((\forall t > 0)( p(tx) = tp(x) )\) and \(S\) is a subspace of \(V\) and \(f:S \rightarrow {\Bbb R}\) is linear and satisfies \((\forall  x \in S)( f(x) \le  p(x) )\) then \(f\) can be extended to \(f^{*} : V \rightarrow {\Bbb R}\) such that \(f^{*}\) is linear and \((\forall x \in V)(f^{*}(x) \le p(x))\).

Comment:

Back