We have the following indirect implication of form equivalence classes:
			
| Implication | Reference | 
|---|---|
| 306 \(\Rightarrow\) 93 | L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski,  W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. | 
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement | 
|---|---|
| 306: | The set of Vitali equivalence classes is linearly orderable. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow (\exists q\in{\Bbb Q})(x-y = q)\).). | 
| 93: | There is a non-measurable subset of \({\Bbb R}\). | 
Comment: