Hypothesis: HR 121:
\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.
Conclusion: HR 344:
If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) | Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false |
\(\cal N24\) Hickman's Model I | This model is a variation of \(\cal N2\) |
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets | \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\) |
Code: 3
Comments: