Fraenkel \(\cal N24(n)\): An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets | Historical notes

Description: \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\)

Parameter(s): This model depends on the following parameter(s): \(n\), \(n\): integer \(>\) 1

All Forms Known to be True in \(\cal N24(n)\):
423, 421, 420, 419, 401, 389, 374-n, 373-n, 371, 369, 368, 367, 366, 364, 363, 362, 361, 358, 357, 352, 350, 341, 340, 338, 337, 330, 327, 324, 316, 315, 313, 309, 307, 306, 305, 294, 289, 288-n, 280, 273, 272, 252, 251, 250, 249, 231, 223, 222, 221, 216, 212, 211, 209, 208, 207-alpha, 206, 203, 199(\(n\)), 197, 194, 191, 190, 189, 185, 182, 170, 169, 165, 151, 145, 142, 139, 137-k, 133, 130, 122, 121, 120-K, 119, 118, 111, 108, 104, 94, 93, 92, 91, 90, 84, 80, 79, 77, 74, 70, 63, 58, 51, 48-K, 47-n, 38, 37, 35, 34, 33-n, 32, 31, 27, 26, 25, 24, 23, 19, 18, 16, 13, 10, 6, 5, 0,

All Forms Known to be False in \(\cal N24(n)\):
430-p, 427, 426, 409, 408, 407, 399, 391, 388, 387, 384, 378, 377, 376, 359, 347, 346, 345, 344, 343, 336-n, 335-n, 334, 333, 332, 331, 328, 326, 323, 317, 303, 296, 295, 286, 284, 270, 264, 262, 261, 260, 259, 258, 257, 256, 255, 239, 218, 215, 214, 213, 202, 201, 193, 192, 188, 181, 174-alpha, 168, 161, 152, 149, 131, 129, 126, 123, 113, 109, 107, 106, 101, 100, 95-F, 88, 87-alpha, 86-alpha, 85, 83, 82, 76, 71-alpha, 68, 67, 66, 64, 62, 61, 60, 57, 50, 49, 45-n, 44, 43, 41, 40, 39, 36, 30, 28-p, 20, 15, 14, 12, 11, 9, 8, 7, 4, 3, 2, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 16-23-24-121-133-191

Falses that are implied by others list: 64-131

References for models trues falses list: References Brunner [1982a], Hickman [1976], Truss [1973a], notes 2(8,9), 18, and 120(49 and 56).

Back