Statement:
Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\).
Howard_Rubin_Number: 101
Parameter(s): This form does not depend on parameters
This form's transferability is: Unknown
This form's negation transferability is: Negation Transferable
Article Citations:
Sierpi'nski-1947: Sur une proposition qui entraine l'existence des ensembles non mesurables
Book references
Note connections:
Howard-Rubin Number | Statement | References |
---|---|---|
101 A | For all sets \(x\) and \(y\), \(x \precsim^* y\) implies \(x\precsim y\). |
Lindenbaum-Tarski-1926
Note [69] |