Statement:
\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable.
Howard_Rubin_Number: 6
Parameter(s): This form does not depend on parameters
This form's transferability is: Transferable
This form's negation transferability is: Negation Transferable
Article Citations:
Book references
Zermelo's Axiom of Choice, Moore, G.H., 1982
Note connections:
Note 3
Howard-Rubin Number | Statement | References |
---|---|---|
6 A | Every uncountable subset of \({\Bbb R}\) contains a condensation point. \ac{G.~Moore} \cite{1982} p 205 and 324, \ac{Sierpi\'nski} \cite{1918}. |
|
6 B | Every uncountable subset of \({\Bbb R}\) has two condensation points. \ac{G.~Moore} \cite{1982} p 205 and 324, \ac{Sierpi\'nski} \cite{1918}. |
|
6 C | If \(A\subseteq{\Bbb R}^n\) and \(A\bigcap B\) is countable for every bounded \(B\) then \(A\) is countable. \ac{G.~Moore} \cite{1982} p 36, \ac{Keremedis/Howard/Rubin/Stanley/Tachtsis} \cite{1999}. |
|