Form equivalence class Howard-Rubin Number: 6

Statement: If \(A\subseteq{\Bbb R}^n\) and \(A\bigcap B\) is countable for every bounded \(B\) then \(A\) is countable. \ac{G.~Moore} \cite{1982} p 36, \ac{Keremedis/Howard/Rubin/Stanley/Tachtsis} \cite{1999}.

Howard-Rubin number: 6 C

Citations (articles):

Connections (notes):

References (books):

Back