Form equivalence class Howard-Rubin Number: 6
Statement: If \(A\subseteq{\Bbb R}^n\) and \(A\bigcap B\) is countable for every bounded \(B\) then \(A\) is countable. \ac{G.~Moore} \cite{1982} p 36, \ac{Keremedis/Howard/Rubin/Stanley/Tachtsis} \cite{1999}.
Howard-Rubin number: 6 C
Citations (articles):
Connections (notes):
References (books):
Back