Statement:
If \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \( |A_{x}| \le |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| \le |\bigcup_{x\in S} B_{x}|\).
Howard_Rubin_Number: 359
Parameter(s): This form does not depend on parameters
This form's transferability is: Unknown
This form's negation transferability is: Negation Transferable
Article Citations:
Higasikawa-1995: Partition principles and infinite sums of cardinal numbers
Book references
Note connections: