Statement:
\(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function.
Howard_Rubin_Number: 16
Parameter(s): This form does not depend on parameters
This form's transferability is: Unknown
This form's negation transferability is: Negation Transferable
Article Citations:
Sierpi'nski-1918: L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse
Book references
Note connections:
Howard-Rubin Number | Statement | References |
---|---|---|
16 A | \(C(\aleph_0,2^{\aleph_0})\): Every denumerable collection of non-empty sets each with power \(2^{\aleph_{0}}\) has a choice function. \ac{Sierpi\'nski} \cite{1918} and note 160. |
|