Statement: If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324.
Howard_Rubin_Number: 29
Parameter(s): This form does not depend on parameters
This form's transferability is: Unknown
This form's negation transferability is: Negation Transferable
Article Citations:
Book references
Zermelo's Axiom of Choice, Moore, G.H., 1982
Note connections: