Statement:

If \(\{f_i: i\in I\}\) is a family of functions such that for each \(i\in I\), \(f_i\subseteq E\times W\), where \(E\) and \(W\) are non-empty sets, and \(\cal B\) is a filter base on \(I\) such that

  1. For all \(B\in\cal B\) and all finite \(F\subseteq E\) there is an \(i\in I\) such that \(f_i\) is defined on \(F\), and
  2. For all \(B \in\cal B\) and all finite \(F\subseteq E\) there exist at most finitely many functions on \(F\) which are restrictions of the functions \(f_i\) with \(i\in I\),  
then there is a function \(f\) with domain \(E\) such that for each finite \(F\subseteq E\) and each \(B\in\cal B\) there is an \(i\in I\) such that \(f|F = f_i|F\).

Howard_Rubin_Number: 408

Parameter(s): This form does not depend on parameters

This form's transferability is: Unknown

This form's negation transferability is: Negation Transferable

Article Citations:
Felscher-1964: Bemerkungen zu einem Lemma von E. Engeler und A. Robinson

Book references

Note connections:

The following forms are listed as conclusions of this form class in rfb1: 62,

Back