Hypothesis: HR 119:
van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function.
Conclusion: HR 358:
\(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |
\(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) |
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) | \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\) |
\(\cal N6\) Levy's Model I | \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime |
Code: 3
Comments: