Fraenkel \(\cal N2^*(3)\): Howard's variation of \(\cal N2(3)\) | Historical notes

Description: \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\)

Parameter(s): This model does not depend on parameters

All Forms Known to be True in \(\cal N2^*(3)\):
425, 420, 419, 418, 416, 415, 414, 413, 397, 396, 395, 390, 389, 387, 382, 381, 375, 371, 369, 368, 367, 366, 364, 363, 362, 361, 350, 349, 337, 333, 330, 329, 328, 316, 315, 313, 309, 307, 306, 305, 294, 292, 289, 287, 280, 276, 273, 272, 269, 268, 254, 252, 251, 232, 223, 222, 221, 212, 211, 208, 206, 203, 199(\(n\)), 197, 194, 191, 190, 189, 185, 182, 173, 170, 169, 155, 147, 145, 144, 142, 141, 140, 139, 137-k, 131, 130, 127, 126, 125, 119, 118, 116, 115, 114, 112, 111, 108, 106, 104, 94, 93, 92, 91, 90, 89, 88, 84, 83, 82, 80, 79, 78, 77, 76, 74, 70, 67, 64, 58, 52, 51, 38, 37, 35, 34, 25, 19, 18, 13, 6, 5, 0,

All Forms Known to be False in \(\cal N2^*(3)\):
426, 423, 422-n, 421, 412, 411, 410, 409, 408, 407, 406, 403, 402, 401, 400, 399, 398, 394, 393, 392, 391, 386, 385, 384, 380, 378, 377, 376, 374-n, 359, 358, 355, 354, 352, 347, 346, 345, 344, 343, 341, 340, 338, 335-n, 334, 332, 331, 327, 325, 324, 323, 322, 317, 303, 302, 295, 288-n, 286, 284, 270, 264, 262, 261, 260, 259, 258, 257, 256, 255, 250, 239, 231, 218, 214, 213, 202, 192, 181, 174-alpha, 168, 165, 164, 161, 154, 153, 152, 151, 150, 133, 132, 129, 123, 122, 121, 113, 110, 109, 107, 101, 100, 87-alpha, 86-alpha, 85, 71-alpha, 68, 66, 62, 61, 60, 50, 49, 47-n, 45-n, 44, 43, 41, 40, 39, 36, 33-n, 32, 31, 30, 29, 27, 23, 21, 20, 17, 16, 15, 14, 10, 9, 8, 7, 4, 3, 2, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 111-141-191-333

Falses that are implied by others list: 110-164-288-334-346

References for models trues falses list: References Howard [1984a], Keremedis [1996a], andnotes 18, 93, and 120(2, 10, and 56).

Back