Hypothesis: HR 0:  \(0 = 0\).

Conclusion: HR 59-le:

If \((A,\le)\) is a partial ordering that is not a well ordering, then there is no set \(B\) such that \((B,\le)\) (the usual injective cardinal ordering on \(B\)) is isomorphic to \((A,\le)\).
Mathias [1979], p 120.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M11\) Forti/Honsell Model Using a model of \(ZF + V = L\) for the ground model, the authors construct a generic extension, \(\cal M\), using Easton forcing which adds \(\kappa\) generic subsets to each regular cardinal \(\kappa\)
\(\cal N11\) Jech's Model II Let \((I,\precsim)\) be a partially ordered set inthe kernel (in the base model without atoms)
\(\cal N19(\precsim)\) Tsukada's Model Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\)

Code: 3

Comments:


Edit | Back