Fraenkel \(\cal N19(\precsim)\): Tsukada's Model | Historical notes

Description: Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\)

Parameter(s): This model depends on the following parameter(s): \(\precsim\), \(\precsim\): partial order not a well order

All Forms Known to be True in \(\cal N19(\precsim)\):
423, 421, 420, 419, 412, 411, 410, 406, 401, 390, 389, 387, 386, 385, 380, 378, 377, 374-n, 373-n, 371, 370, 369, 368, 367, 366, 364, 363, 362, 361, 358, 357, 356, 352, 350, 349, 344, 343, 342-n, 338, 336-n, 332, 331, 330, 329, 327, 326, 324, 323, 317, 315, 314, 313, 311, 309, 308-p, 307, 306, 305, 298, 294, 293, 289, 288-n, 287, 285, 283, 280, 276, 273, 272, 271-n, 270, 269, 268, 252, 251, 250, 249, 242, 241, 235, 233, 231, 229, 228, 227, 226, 225, 223, 222, 221, 216, 213, 212, 211, 209, 207-alpha, 206, 203, 201, 199(\(n\)), 198, 197, 194, 191, 190, 189, 182, 178-n-N, 170, 169, 165, 154, 153, 151, 150, 146, 145, 142, 141, 140, 139, 137-k, 132, 130, 127, 123, 122, 121, 120-K, 119, 111, 108, 107, 104, 102, 99, 96, 94, 93, 92, 91, 88, 85, 83, 80, 79, 74, 73, 72, 70, 69, 64, 63, 62, 61, 60, 52, 49, 48-K, 47-n, 46-K, 45-n, 38, 37, 35, 34, 33-n, 32, 31, 30, 27, 26, 25, 24, 23, 19, 18, 16, 14, 13, 12, 11, 10, 6, 5, 0,

All Forms Known to be False in \(\cal N19(\precsim)\):
430-p, 427, 391, 359, 347, 335-n, 334, 333, 328, 292, 286, 264, 262, 261, 260, 259, 258, 257, 256, 255, 253, 239, 218, 214, 202, 192, 179-epsilon, 168, 152, 149, 144, 133, 118, 115, 114, 112, 109, 101, 100, 95-F, 90, 89, 67, 66, 59-le, 51, 40, 28-p, 20, 15, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 16-23-24-60-91-191-317

Falses that are implied by others list: 15-51-59-118-144-152-192-253-328

References for models trues falses list: References Tsukada [1977], Howard [1973], Howard/Rubin [1995b],Krom [1986], Morris [1969], notes 2(8,9), 18, 107,120(28, 34, 45, and 47), and 121.

Back