Hypothesis: HR 142:

\(\neg  PB\):  There is a set of reals without the property of Baire.  Jech [1973b], p. 7.

Conclusion: HR 52:

Hahn-Banach Theorem:  If \(V\) is a real vector space and \(p: V \rightarrow {\Bbb R}\) satisfies \(p(x+y) \le p(x) + p(y)\) and \((\forall t > 0)( p(tx) = tp(x) )\) and \(S\) is a subspace of \(V\) and \(f:S \rightarrow {\Bbb R}\) is linear and satisfies \((\forall  x \in S)( f(x) \le  p(x) )\) then \(f\) can be extended to \(f^{*} : V \rightarrow {\Bbb R}\) such that \(f^{*}\) is linear and \((\forall x \in V)(f^{*}(x) \le p(x))\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M2\) Feferman's model Add a denumerable number of generic reals to the base model, but do not collect them
\(\cal M2(\kappa)\) Feferman/Pincus Model This is an extension of <a href="/models/Feferman-1">\(\cal M2\)</a> in which there are \(\kappa\) generic sets, where \(\kappa\) is a regular cardinal
\(\cal M38\) Shelah's Model II In a model of \(ZFC +\) "\(\kappa\) is a strongly inaccessible cardinal", Shelah uses Levy's method of collapsing cardinals to collapse \(\kappa\) to \(\aleph_1\) similarly to <a href="/articles/Solovay-1970">Solovay [1970]</a>
\(\cal N51\) Weglorz/Brunner Model Let \(A\) be denumerable and \(\cal G\)be the group of all permutations of \(A\)

Code: 3

Comments:


Edit | Back