Hypothesis: HR 309:

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

Conclusion: HR 173:

\(MPL\): Metric spaces are para-Lindelöf.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N54\) Good/Tree/Watson Model II This model is a variation of \(\cal N 53\)

Code: 3

Comments:


Edit | Back