Hypothesis: HR 309:

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

Conclusion: HR 221:

For all infinite \(X\), there is a non-principal measure on \(\cal P(X)\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N51\) Weglorz/Brunner Model Let \(A\) be denumerable and \(\cal G\)be the group of all permutations of \(A\)

Code: 3

Comments:


Edit | Back