Hypothesis: HR 6:
\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable.
Conclusion: HR 291:
For all infinite \(x\), \(|x!|=|x^x|\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N29\) Dawson/Howard Model | Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\) |
Code: 3
Comments: