This non-implication, Form 198 \( \not \Rightarrow \) Form 144, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1659, whose string of implications is:
    15 \(\Rightarrow\) 30 \(\Rightarrow\) 198
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1051, Form 15 \( \not \Rightarrow \) Form 144 whose summary information is:
    Hypothesis Statement
    Form 15 <p> \(KW(\infty,\infty)\) (KW), <strong>The Kinna-Wagner Selection Principle:</strong> For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-81($n$)">Form 81(\(n\))</a>.   </p>

    Conclusion Statement
    Form 144 <p> Every set is almost well orderable. </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 198 \( \not \Rightarrow \) Form 144 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them
\(\cal M3\) Mathias' model Mathias proves that the \(FM\) model <a href="/models/Mathias-Pincus-1">\(\cal N4\)</a> can be transformed into a model of \(ZF\), \(\cal M3\)
\(\cal M11\) Forti/Honsell Model Using a model of \(ZF + V = L\) for the ground model, the authors construct a generic extension, \(\cal M\), using Easton forcing which adds \(\kappa\) generic subsets to each regular cardinal \(\kappa\)

Edit | Back