This non-implication, Form 217 \( \not \Rightarrow \) Form 123, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1071, Form 217 \( \not \Rightarrow \) Form 146 whose summary information is:
    Hypothesis Statement
    Form 217 <p> Every infinite partially ordered set has either an infinite chain or an infinite antichain. </p>

    Conclusion Statement
    Form 146 <p> \(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is  an A1 space. (\((X,T)\) is A1 means if \(U \subseteq  T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4751, whose string of implications is:
    123 \(\Rightarrow\) 62 \(\Rightarrow\) 146

The conclusion Form 217 \( \not \Rightarrow \) Form 123 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)

Edit | Back