This non-implication,
Form 249 \( \not \Rightarrow \)
Form 61,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 214 | <p> \(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\). </p> |
Conclusion | Statement |
---|---|
Form 46-K | <p> If \(K\) is a finite subset of \(\omega-\{0,1\}\), \(C(\infty,K)\): For every \(n\in K\), every set of \(n\)-element sets has a choice function. </p> |
The conclusion Form 249 \( \not \Rightarrow \) Form 61 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M47(n,M)\) Pincus' Model IX | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\) |