This non-implication, Form 371 \( \not \Rightarrow \) Form 83, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 920, Form 371 \( \not \Rightarrow \) Form 64 whose summary information is:
    Hypothesis Statement
    Form 371 <p> There is an infinite, compact, Hausdorff, extremally disconnected topological space.  <a href="/excerpts/Morillon-1993-1">Morillon [1993]</a>. </p>

    Conclusion Statement
    Form 64 <p> \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9789, whose string of implications is:
    83 \(\Rightarrow\) 64

The conclusion Form 371 \( \not \Rightarrow \) Form 83 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M37\) Monro's Model III This is a generic extension of <a href="/models/Cohen-1">\(\cal M1\)</a> in which there is an amorphous set (<a href="/form-classes/howard-rubin-64">Form 64</a> is false) and \(C(\infty,2)\) (<a href="/form-classes/howard-rubin-88">Form 88</a>) is false
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N43\) Brunner's Model II The set of atoms \(A=\bigcup\{P_n: n\in\omega\}\), where \(|P_n|=n+1\) for each \(n\in\omega\) and the \(P_n\)'s arepairwise disjoint

Edit | Back