This non-implication,
Form 78 \( \not \Rightarrow \)
Form 306,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 43 | <p> \(DC(\omega)\) (DC), <strong>Principle of Dependent Choices:</strong> If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See <a href="/articles/Tarski-1948">Tarski [1948]</a>, p 96, <a href="/articles/Levy-1964">Levy [1964]</a>, p. 136. </p> |
Conclusion | Statement |
---|---|
Form 93 | <p> There is a non-measurable subset of \({\Bbb R}\). </p> |
The conclusion Form 78 \( \not \Rightarrow \) Form 306 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M5(\aleph)\) Solovay's Model | An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\) |
\(\cal M38\) Shelah's Model II | In a model of \(ZFC +\) "\(\kappa\) is a strongly inaccessible cardinal", Shelah uses Levy's method of collapsing cardinals to collapse \(\kappa\) to \(\aleph_1\) similarly to <a href="/articles/Solovay-1970">Solovay [1970]</a> |