This non-implication, Form 123 \( \not \Rightarrow \) Form 407, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 221, Form 123 \( \not \Rightarrow \) Form 99 whose summary information is:
    Hypothesis Statement
    Form 123 <p> \(SPI^*\): <strong>Uniform weak ultrafilter principle:</strong> For each family \(F\) of infinite sets \(\exists f\) such that \(\forall x\in F\), \(f(x)\) is a non-principal ultrafilter on \(x\). </p>

    Conclusion Statement
    Form 99 <p> <strong>Rado's Selection Lemma:</strong> Let \(\{K(\lambda): \lambda \in\Lambda\}\) be a family  of finite subsets (of \(X\)) and suppose for each finite \(S\subseteq\Lambda\) there is a function \(\gamma(S): S \rightarrow X\) such that \((\forall\lambda\in S)(\gamma(S)(\lambda)\in K(\lambda))\).  Then there is an \(f: \Lambda\rightarrow X\) such that for every finite \(S\subseteq\Lambda\) there is a finite \(T\) such that \(S\subseteq T\subseteq\Lambda\) and such that \(f\) and \(\gamma (T)\) agree on S. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1298, whose string of implications is:
    407 \(\Rightarrow\) 14 \(\Rightarrow\) 99

The conclusion Form 123 \( \not \Rightarrow \) Form 407 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N7\) L\"auchli's Model I \(A\) is countably infinite

Edit | Back