This non-implication, Form 132 \( \not \Rightarrow \) Form 28-p, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1671, whose string of implications is:
    15 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 132
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1225, Form 15 \( \not \Rightarrow \) Form 289 whose summary information is:
    Hypothesis Statement
    Form 15 <p> \(KW(\infty,\infty)\) (KW), <strong>The Kinna-Wagner Selection Principle:</strong> For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-81($n$)">Form 81(\(n\))</a>.   </p>

    Conclusion Statement
    Form 289 <p> If \(S\) is a set of subsets of a countable set and \(S\) is closed under chain unions, then \(S\) has a \(\subseteq\)-maximal element. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 6115, whose string of implications is:
    28-p \(\Rightarrow\) 427 \(\Rightarrow\) 67 \(\Rightarrow\) 89 \(\Rightarrow\) 90 \(\Rightarrow\) 91 \(\Rightarrow\) 79 \(\Rightarrow\) 289

The conclusion Form 132 \( \not \Rightarrow \) Form 28-p then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Edit | Back