Hypothesis: HR 67:
\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).
Conclusion: HR 47-n:
If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) |
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) | \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\) |
Code: 5
Comments: