Hypothesis: HR 91:

\(PW\):  The power set of a well ordered set can be well ordered.

Conclusion: HR 90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2(\hbox{LO})\) van Douwen's Model This model is another variationof \(\cal N2\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)
\(\cal N10\) H&ouml;ft/Howard/Mostowski Model (The model is a variation of\(\cal N3\).) \(A\) as ordered by \(\precsim\) has the same order type as therationals; \(\cal G\) is the group of all order automorphisms of \(A\); \(S\) isthe set of all subsets \(E\) of \(A\) that satisfy the following threeconditions:\item{1.} \(E\) is well ordered by \(\precsim\).\item{2.} \(E\) is bounded in \(A\).\item{3.} If \(b:\alpha\to E\) is an order preserving bijection from\(\alpha\) onto \(E\) and if \(\lambda < \alpha\) is a limit ordinal then\(\{b(\beta) : \beta < \gamma\}\) has no least upper bound in\((A,\precsim)\).\par\noindentIn <a href="/articles/H\"oft/Howard-1994">H\"oft/Howard [1994]</a> it is shown that, in \(\cal N10\), everyDedekind finite set is finite (9 is true), but \((A,\precsim)\) is alinearly ordered set with no infinite descending sequences that cannot bewell ordered (77 is false)
\(\cal N19(\precsim)\) Tsukada's Model Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\)
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)
\(\cal N37\) A variation of Blass' model, \(\cal N28\) Let \(A=\{a_{i,j}:i\in\omega, j\in\Bbb Z\}\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)
\(\cal N46\) H&ouml;ft/Howard Model I The set \(A\) of atoms is denumerable andordered by \(\le\) so that \((A,\le)\) is order isomorphic to the rationals.\(A\) is written as the union \(A = D_1 \cup D_2 \cup D_3\) of three densedisjoint subsets
\(\cal N47\) H&ouml;ft/Howard Model II This model is similar to \(\cal N33\).The atoms \(A\) are ordered by \(\le\) so that they have order type that ofthe real numbers \(\Bbb R\) (\(|A| = 2^{\aleph_0}\))
\(\cal N48\) Pincus' Model XI \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\)
\(\cal N52\) Felgner/Truss Model Let \((\cal B,\prec)\) be a countableuniversal homogeneous linearly ordered Boolean algebra, (i.e., \(<\) is alinear ordering extending the Boolean partial ordering on \(B\))
\(\cal N53\) Good/Tree/Watson Model I Let \(A=\bigcup \{Q_n:\ n\in\omega\}\), where \(Q_n=\{a_{n,q}:q\in \Bbb{Q}\}\)

Code: 5

Comments:


Edit | Back