Hypothesis: HR 16:

\(C(\aleph_{0},\le 2^{\aleph_{0}})\):  Every denumerable collection of non-empty sets  each with power \(\le  2^{\aleph_{0}}\) has a choice function.

Conclusion: HR 291:

For all infinite \(x\), \(|x!|=|x^x|\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)

Code: 5

Comments:


Edit | Back